Start Before October: Get 1 Month Free Maintenance or 20% Off Services

Custom Software • AI • Data Engineering • Bioinformatics

Custom Software • AI • Data Engineering • BioinformaticsCustom Software • AI • Data Engineering • BioinformaticsCustom Software • AI • Data Engineering • Bioinformatics
  • HOME
  • PORTFOLIO
  • TEAM
  • Más
    • HOME
    • PORTFOLIO
    • TEAM

Custom Software • AI • Data Engineering • Bioinformatics

Custom Software • AI • Data Engineering • BioinformaticsCustom Software • AI • Data Engineering • BioinformaticsCustom Software • AI • Data Engineering • Bioinformatics
  • HOME
  • PORTFOLIO
  • TEAM

Deep Learning GAN Platform for Omics Data Augmentation

Overview

Developed a deep learning–based GAN methodology employing the Atlas model on high-dimensional omics datasets with limited sample sizes. This approach generated synthetic samples with far greater representativity than traditional methods (SMOTE, random oversampling), enabling class balancing and more accurate predictive modeling in biomarker discovery pipelines.

 

Key Features

  • GAN-based augmentation for transcriptomics and proteomics datasets
  • Deep learning architecture optimized for high-dimensional, low-sample-size data
  • Benchmarked against SMOTE and RO, delivering superior representativity
  • Integration-ready API for downstream ML workflows
  • Customizable for client-specific assays and rare-event classes
     

Add-ons

  • Conditional GANs for disease-specific simulations
  • Multi-omics augmentation (RNA-seq, proteomics, metabolomics)
  • Synthetic dataset annotation for training and validation
  • Cloud deployment for high-throughput data generation
     

Results

  • Generated 25× more usable data per assay, enabling larger training sets
  • Reduced costs and iteration times in assay development
  • Delivered predictive cell control powered by robust, AI-generated big data
  • AI models provided greater representativity, minimizing biases
  • Improved predictive accuracy and reliability of downstream outputs
     

Deployment
Deployed on the client’s secure internal cloud infrastructure, fully integrated into their bioinformatics workflows under GAMP-aligned validation.

Client:  Mid-size pharmaceutical company (Translational Medicine R&D Unit)  

Timeline: 12 months (development, benchmarking, and deployment)

Discover how Atlas can support your project

Copyright © 2025 Atlas AI - Custom Software,  Data Engineering, Bioinformatics  - All rights reserved

  • HOME
  • PORTFOLIO
  • TEAM

Con tecnología de

Este sitio web utiliza cookies

Usamos cookies para analizar el tráfico del sitio web y optimizar tu experiencia en el sitio. Al aceptar nuestro uso de cookies, tus datos se agruparán con los datos de todos los demás usuarios.

RechazarAceptar